
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2001; 35: 93–116

A stabilized finite element method for the incompressible
Navier–Stokes equations using a hierarchical basis

Christian H. Whitinga and Kenneth E. Jansenb,*

a Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy, NY, U.S.A.
b Department of Mechanical Engineering, Aeronautical Engineering and Mechanics, Rensselaer Polytechnic Institute,

Troy, NY, U.S.A.

SUMMARY

Stabilized finite element methods have been shown to yield robust, accurate numerical solutions to both
the compressible and incompressible Navier–Stokes equations for laminar and turbulent flows. The
present work focuses on the application of higher-order, hierarchical basis functions to the incompressible
Navier–Stokes equations using a stabilized finite element method. It is shown on a variety of problems
that the most cost-effective simulations (in terms of CPU time, memory, and disk storage) can be
obtained using higher-order basis functions when compared with the traditional linear basis. In addition,
algorithms will be presented for the efficient implementation of these methods within the traditional finite
element data structures. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the last two decades, stabilized finite element methods have grown in popularity,
especially for fluid dynamics applications. Starting with the streamline upwind/Petrov–
Galerkin (SUPG) method of Brooks and Hughes [1] through the work of Hughes et al. [2] on
the Galerkin/least squares (GLS) method and up to recent work on multiscale methods of
Hughes [3] and related work on residual-free bubbles by Rússo [4] and Brezzi et al. [5], a
number of stabilized formulations have been proposed. A key feature of stabilized methods is
that they have been proven (for relevant model problems) to be stable and to attain optimal
convergence rates with respect to the interpolation error (see Hughes et al. [2] and Franca et
al. [6]). This implies that as the polynomial order of the underlying finite element space is
increased, the error in the numerical solution decreases at the same rate as the interpolation
error. The present work extends the work of Whiting et al. [7] to the incompressible
Navier–Stokes equations.
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The goal of the present work is the use of hierarchical basis functions as a means to attain
more accurate and cost-effective finite element simulations of complex turbulent flows.
Previous experience suggests that stabilized methods can be successfully used to compute
turbulence (see Jansen et al. [8] for an application to Reynolds-averaged Navier–Stokes
(RANS) simulations and Jansen [9] for an application to direct numerical simulations (DNS)
and large eddy simulations (LES)). These methods have been demonstrated by Jansen [9] to be
minimally dissipative by studying the growth of a small disturbance in channel flow. The real
pacing item in the simulations of Jansen [9] was the cost of the finite element simulation rather
than the ability of a stabilized method to compute turbulence. This has led to a search for a
more cost effective method, while remaining within the general stabilized finite element
framework.

It is hoped that this new approach will enable simulations of fluid dynamics problems that
are not currently feasible due to current cost restrictions. This work presents a step toward this
more ambitious goal by applying the hierarchical basis to simpler, well-understood problems,
where their cost effectiveness may be more readily quantified. We have chosen a stabilized
finite element formulation based on the formulation of Taylor et al. [10] for incompressible
flows and have extended it to accommodate higher-order basis functions. This formulation has
been proven to be robust and accurate for turbulent simulations using linear basis functions.
This, combined with the higher-order accuracy that stabilized methods have been shown to
attain, has led us to select this formulation.

The basis functions are defined using the rich mesh data structure of Beall and Shephard
[11], where basis functions are associated with the individual topological entities of the mesh
(see also Whiting et al. [7] for an application to the compressible Navier–Stokes equations).
Mesh entity based hierarchical basis functions support non-uniform k-refinement of meshes of
arbitrary element type, e.g., tetrahedral, hexahedral, and pyramid (k refers to the polynomial
order of the finite element basis) while maintaining C0 continuity.

This paper presents a unique approach to the use of k-order finite element computations.
Here, the rich data structure typically used for these computations (see Beall and Shephard
[11]) is used only for pre- and post-processing, where the full topological hierarchy (region’s
relationship to faces, faces’ relationship to edges, edges’ relationship to vertices) is required.
The analysis code is then able to use traditional finite element data structures (where, for each
element, local element degrees of freedom are linked to the global degree of freedom) such as
those found in Hughes [12]. This enables us to maintain the structure of an already optimized
three-dimensional finite element solver, while gaining the efficiency and accuracy of the
hierarchical basis. With relatively few modifications, an existing finite element solver can be
converted to use the hierarchical basis.

Numerical simulations will be presented that demonstrate a clear advantage of higher-order
methods over the traditional, linear basis methods for the incompressible Navier–Stokes
equations. It will be shown that the higher-order methods can provide the most cost-effective
solutions in terms of both storage and computer time. These simulations have led us to begin
the application of these hierarchical basis methods to turbulent flows using the Reynolds-
averaged equations as well as LES. While it is expected that non-uniform k-refinement (in
addition to h-refinement) may be necessary to get the best results, the simulations presented
here were all performed using uniform k meshes.
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2. MESH ENTITY BASED HIERARCHICAL BASIS

The hierarchical basis functions employed herein are based on the constructions of Shephard
et al. [13] for specifying variable k-order meshes based on the individual entities (vertices,
edges, faces, and regions) that define the finite element mesh. This is often referred to as a
topological hierarchy of mesh entities in the k-version finite element community. The motiva-
tion for using this abstract representation is that data structures consisting only of nodal
co-ordinates and element connectivity are not sufficient for adaptive, variable k-order finite
element meshes, which must rely on richer structures that allow the independent assignment of
polynomial order over the elements as noted by Demkowicz et al. [14]. These considerations
are taken into account in the present work wherever possible. The set of basis functions used
here has also been shown to yield better conditioned matrices than other hierarchical bases for
tetrahedral elements (see Carnevali et al. [15]). Following is a brief discussion of the basis
functions; a more complete description may be found in Whiting et al. [7]. It should be
emphasized that these rich data structures are used only for pre- and post-processing so that
the efficiency of the flow solver is maintained for large-scale parallel computations.

2.1. Description of basis

The definition of the piecewise polynomial basis used in the present work requires us to
introduce the concept of a topological hierarchy of mesh entities (i.e., the collection of vertices,
edges, faces, and regions, which comprise the finite element mesh). Additional details about the
mesh data structures may be found in the work of Beall and Shephard [11]. The individual
basis functions are defined in terms of parametric co-ordinate systems, ji, which are local to
each mesh entity. This is in contrast to the Lagrange basis functions, which are defined solely
in terms of element parametric co-ordinates. As mentioned above, efficiency on large-scale
problems is maintained by using this rich mesh data structure only in the pre- and post-
processing phases of the analysis. During pre-processing, the traditional finite element data
structures, generalized to include the higher-order degrees of freedom, are generated and
written to disk and subsequently read by the analysis code. This compact data structure stores
the degree of freedom connectivity information and nodal co-ordinates as well as information
indicating the sign of each basis function (which differs from +1.0 only for certain cubic
shape functions, see Whiting [16]).

The topological description of the mesh, denoted TM, along with its adjacency relationships,
enables a precise definition of a finite element.

Definition 1
The closure of a finite element, denoted V( e, of dimension de, is defined as

V( e={Me
de, Me

de{Mj
de−1}, . . . , Me

de{Mj
0}} (1)

where Me
de represents the mesh entity of dimension de, which bounds mesh region e.

We have introduced the notation for the mesh entity adjacencies as
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Mi
di{Mdj} (2)

which represents the mesh entities of dimension dj bounding mesh entity di. In other words, the
finite element is the mesh region along with its lower-order bounding mesh entities. For
example, each tetrahedral element has four bounding vertices, six bounding edges, four
bounding faces, and one region.

To construct the finite element approximation to the solution, we expand the continuous
quantities appearing in the weak form in terms of a piecewise polynomial basis defined on each
element (as described below).

Definition 2
Let Pk(V( e) be the piecewise polynomial space, complete to order k, defined on the finite
element V( e.

The basis for Pk(V( e) consists of functions Na(ji), a=1, . . . , nes, contributed by the mesh
entities in V( e ; the polynomial order assigned to each entity dictates how many basis functions
it will contribute. Here, nes is the number of basis functions contributing to a given element’s
basis and equals the sum of the number of functions contributing from the region and each
bounding entity. Also note that ji is a local co-ordinate for the mesh entity in question, and
is mapped to the standard co-ordinate system of the element in question (e.g., barycentric
co-ordinates for a tetrahedral region). Although the polynomial order may be assigned
independently to each mesh entity, it should be noted that the order of complete polynomial
representable by a given element’s basis will be constrained by the minimum complete order
assigned to any of the entities in V( e. More details of the individual basis functions may be
found in Shephard et al. [13] or Whiting [16].

To construct element matrices and residual vectors, the discrete solution is expanded in
terms of these basis functions as

f e(ji, t)= %
nes

a=1

fa(t)Na(ji) (3)

where f e(ji, t) is the finite element approximation of any variable on element e, and fa(t) are
the desired coefficients with respect to the basis functions. Note that ji is mapped to the global
co-ordinates xj using a linear mapping involving the vertex shape functions, which, due to the
hierarchical nature of the basis, are linear regardless of the polynomial order of the element
(note that for non-straight-sided elements such a linear mapping is not sufficient, and a
higher-order mapping must be constructed). As mentioned above, the number of basis
functions contributed by each mesh entity depends on the polynomial order assigned to that
entity. When only C0 continuity is desired, vertices will each contribute one basis function
(equivalent to the standard linear basis functions). For a basis complete to order k, Table I
provides the number of basis functions contributed by each type of mesh entity. From this
table, we can compute the number of shape functions contributed by a tetrahedral element
complete to order k as
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Table I. Number of contributed shape functions.

nv=1Vertex: (k]1)
ne= (k−1)Edge: (k]2)
nf=

1
2 (k−1)(k−2) (k]3)Face:

nr=
1
6 (k−1)(k−2)(k−3)Region: (k]4)

nes=4nv+6ne+4nf+nr=
1
6

(k+1)(k+2)(k+3) (4)

As Table I indicates, edges, faces, and regions only contribute basis functions if the
polynomial order is greater than that indicated in the right-hand column. The key difference
between hierarchical and Lagrange basis functions is that the hierarchical basis of order k−1
is a subset of the basis of order k. This important property provides a natural scale separation
that is crucial for the design of new multiscale methods for computing turbulence (see Hughes
et al. [17]). These LES techniques exploit this capacity by applying common models (e.g.,
Smagorinsky) only to the higher polynomial order portion of the basis, leaving the low-order
scales free of modeling. Hierarchical and Lagrange basis functions also differ in that the
Lagrange basis only contributes polynomials of a single order, whereas hierarchical basis
functions will be of different order. The polynomial order of each of the basis functions for
each entity type is discussed in detail in Shephard et al. [13]. To get the total (global) number
of basis functions, ns, for a given mesh we sum over the number of shape functions contributed
by each mesh entity for all entities in the mesh. (Note that for a Lagrange basis, ns is equal to
the number of ‘nodes’ in the mesh.)

As mentioned above, the higher-order computations can be made more efficient (for fixed k)
by simply extending the existing finite element data structures to accommodate the additional
degrees of freedom emanating from higher-order basis functions. This extension is only
possible (to our knowledge) for kB4 due to the nature of the higher-order face functions. For
k]4, a minimum of an additional face-type data structure must be added.

2.2. Post-processing hierarchical solutions

Post-processing of higher-order solutions presents some difficulty, since current visualization
packages typically require linear basis functions represented by element nodal connectivity,
with data associated with nodes. Since the solution coefficients of the hierarchical basis are not
simply the solution values at specific nodal points (as with the Lagrange basis), additional
work is needed to effectively visualize the hierarchical solution. The most straightforward
approach is to create a refined mesh, evaluate the hierarchical solution at each of the new
nodes, and generate a new element connectivity before using a standard, linear visualization
package. This is the method that has been employed herein, where the number of refinement
levels was chosen such that the plots did not visibly change as additional levels were added. It
is hoped that future visualization packages may incorporate the hierarchical basis function
coefficients directly. Research is currently underway in this area. Line plots of solution values
are obtained by evaluating the (higher-order) finite element solution at a series of locations in
the global co-ordinate system. This operation involves a search through the elements to
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determine what element a given global point lies in before the solution is evaluated. While
this approach can be quite costly for low polynomial-order solutions, where a large number
of elements are required, the burden is reduced with high-order solutions owing to the
dramatic reduction in the number of elements necessary to attain solutions of similar
quality. More details of the post-processing techniques for hierarchical basis simulations
may be found in Whiting [16].

2.3. Application of boundary and initial conditions

We would like to conclude this section with a discussion of boundary and initial condi-
tions. Higher-order simulations using Lagrange basis functions enforce essential boundary
conditions in a relatively straightforward manner, as basis coefficients correspond to solu-
tion values at nodes, 6iz. the Lagrange interpolation equation Na(jb)=dab. Hierarchical
basis functions, however, involve the solution of a system of linear equations to compute
the basis coefficients of the known boundary condition function. In addition, since the basis
coefficients are not associated with particular spatial locations (except vertex functions), a
unique set of interpolation points must be chosen.

Suppose we wish to specify that f(xi)=g(xi) over some portion of the boundary (the
entire domain for an initial condition), where f(xi) could be any of the solution variables.
The finite element solution procedure uses the values of the basis coefficients that corre-
spond to g(xi). We can find the coefficients of an approximation to g(xi) as

g(xi): ĝ(xi)= %
nip

a=1

gaNa (5)

where Na are the element basis functions, ga are the unknown coefficients, and nip is the
number of interpolation points, which must equal nes, the number of element shape func-
tions. To find these coefficients, we require the approximation to interpolate the given
function, i.e.

Mg=R (6)

M= [Mab ]=Na(jb
int) and R= [Rb ]=g(xi(jb

int)) (7)

where jb
int is the bth interpolation point (in element co-ordinates). This system of linear

equations is solved for the basis coefficients, gb, for each element, which are used when
needed by the analysis code to evaluate f(xi) (which is expanded in the same basis as
ĝ(xi)). It should be noted that this boundary condition data is also pre-computed and
subsequently read by the analysis code along with the element data structures. The interpo-
lation points used in the present work are taken from the work of Chen and Babuska [18],
where they derived an optimal set of interpolation points for a tetrahedral region.
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3. INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

Stabilized finite element methods have been proven to be stable and higher-order-accurate for
a linear advective–diffusive system (a model problem for the Navier–Stokes equations) in
Hughes et al. [2] and for the linearized incompressible Navier–Stokes equations in Franca and
Frey [6]. These types of formulations have also been effectively used for computing complex
compressible and incompressible turbulent flows (see Jansen [9]). The higher-order accuracy
properties as well as the robustness on complex flows have motivated our choice of finite
element formulation. We first provide the strong form of the incompressible Navier–Stokes
equations, followed by a description of the finite element method used to discretize the
associated weak form, and finally a discussion of the local reconstruction technique used to
obtain the diffusive flux terms (for k]2).

3.1. Strong form

Consider the application of the mesh entity based hierarchical basis functions to the time-
dependent, incompressible Navier–Stokes equations. First, consider the strong form of the
continuity and momentum equations written in the so-called advective form (see Gresho [19])

ui,i=0

u; i+uiui, j= −p,i+tij, j+ fi (8)

where ui is the ith component of velocity, p is the pressure divided by the density r (assumed
constant), fi is the prescribed body force (also divided by r), and tij is the viscous stress tensor
given by

tij=n(ui, j+uj,i) (9)

where n=m/r is the kinematic viscosity, and the summation convention is used throughout
(sum on repeated indices).

3.2. Weak form— finite element discretization

To proceed with the finite element discretization of the weak form of the Navier–Stokes
equations (8), we first introduce the discrete weight and solution function spaces that are used.
Recall that V( ¦RN represents the closure of the physical spatial domain, V@G, in N
dimensions; only N=3 is considered. The boundary is decomposed into portions with natural
boundary conditions, Gh, and essential boundary conditions, Gg, i.e., G=Gg@Gh. In addition,
H1(V) represents the usual Sobolev space of functions with square-integrable values and
derivatives on V (see Hughes [12]).

Subsequently, V is discretized into nel finite elements, V( e. With this, we can define the
discrete trial solution and weight spaces for the semi-discrete formulation as

Sh
k={7 �7( · , t)�H1(V)N, t� [0, T ], 7 �x�V( e

�Pk(V( e)N, 7( · , t)=g on Gg} (10)

Wh
k={w �w( · , t)�H1(V)N, t� [0, T ], w �x�V( e

�Pk(V( e)N, w( · , t)=0 on Gg} (11)
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Ph
k={p �p( · , t)�H1(V), t� [0, T ], p �x�V( e

�Pk(V( e)} (12)

where Pk(V( e) is defined in Definition 2. Let us emphasize that the local approximation space,
Pk(V( e), is the same for both the velocity and pressure variables. This is possible due to the
stabilized nature of the formulation to be introduced below. These spaces represent discrete
sub-spaces of the spaces in which the weak form is defined. Note that the boundary conditions
are represented by approximations within the discrete finite element spaces.

The stabilized formulation used in the present work is based on that described by Taylor et
al. [10] modified to include the higher-order basis functions. Given the spaces defined above,
we first present the semi-discrete Galerkin finite element formulation applied to the weak form
of Equation (8) as

Find u�Sh
k and p�Ph

k such that

BG(wi, q ; ui, p)=0

BG(wi, q ; ui, p)=
&

V
{wi(u; i+ujui, j− fi)+wi, j(−pdij+tij)−q,iui} dx

+
&

Gh

{wi(pdin−tin)+qun} ds (13)

for all w�Wh
k and q�P. The boundary integral term arises from the integration by parts and

is only carried out over the portion of the domain without essential boundary conditions. Since
the Galerkin method is unstable for the equal-order interpolations given above, we add
additional stabilization terms, which yields

Find u�Sh
k and p�Ph

k such that

B(wi, q ; ui, p)=0

B(wi, q ; ui, p)=BG(wi, q ; ui, p)+ %
nel

e=1

&
V( e

{tM(ujwi, j−q,i)Li+tCwi,iuj, j} dx

+ %
nel

e=1

&
V( e

{wiuj
D

ui, j+ t̄uj
D

wi, juk
D

ui,k}dx (14)

for all w�Wh
k and q�Ph

k. We have used Li to represent the residual of the ith momentum
equation

Li=u; i+ujui, j+p,i−tij, j− fi (15)

The second term on the right-hand side in the stabilized formulation (14) represents the typical
stabilization added to the Galerkin formulation for the incompressible set of equations (see
Franca and Frey [6]). The first part of the third term in Equation (14) was introduced by
Taylor et al. [10] to overcome the lack of momentum conservation introduced as a
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consequence of the momentum residual appearance in the continuity equation. The second
part of this term was introduced to stabilize this new advective term. To see that this
formulation conserves momentum, set w={1, 0, 0} and q=u1 in Equation (14), which leaves
only boundary terms. This exercise also yields the advective velocity correction to restore
conservation, i.e.

ui
D
= −tMLi (16)

The stabilization parameters for continuity and momentum are defined as

tM=
C


c1/Dt2+c2uigijuj+c3n
2gijgij

(17)

tC=
1/tM

tr(gij)
(18)

and the stabilization of the new advective term is defined in direct analogy with tM as

t̄=
C'

c2ui
D

gijuj
D

(19)

where C, c1, c2, and c3 are defined based on the one-dimensional, linear advection–diffusion
equation using a linear finite element basis and gij=jk,ijk, j is the covariant metric tensor
related to the mapping from global to element co-ordinates. The constant c3 is modified for
higher-order elements to obtain the correct order of convergence in the diffusive limit as
required by the use of the inverse estimates in the accuracy analysis of Franca and Frey [6].
More details and precise definitions of these constants may be found in Whiting [16].

3.3. Local reconstruction of diffusi6e flux

Careful inspection of the weak form (14), and in particular the momentum residual equation
(15), reveals that it is necessary to calculate the second derivative of the solution variable when
evaluating the residual of the diffusive flux stabilization terms

qitij, j=n(ui, j+uj,i), j (20)

While these terms are often neglected for linear basis calculations (with simple justification),
their inclusion is vital to the accuracy of higher-order simulations (examples run without these
terms have shown a significant degradation of solution quality). Although it is possible to
evaluate these terms directly from the second derivatives of the basis functions, we opt for a
more efficient method of using a local reconstruction of the diffusive flux terms based on an
L2-projection followed by a re-interpolation (see Whiting et al. [7] or Jansen et al. [20]). Briefly

Mt̂ij=Rij (21)
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where

M= [Mab ]=
&

V( e

NaNb dx, R={Ra}=
&

V( e

Natij dx (22)

are solved for the diffusive flux projection coefficients, t̂ ij
a, which are then re-interpolated with

the gradients of the basis functions to form an approximation to qi as

qi= %
nes

a=1

Na, jt̂ ij
a (23)

Jansen et al. [20] also present a technique for global reconstruction of the diffusive flux for
linear basis computations which has been shown to improve the accuracy of linear basis
computations at a negligible additional cost. Due to these considerations, all linear basis
computations shown here use the global reconstruction technique.

3.4. Discrete system of equations

To derive a discrete system of equations, the weight functions wi and q, the solution variables
ui and p, and their time derivatives are expanded in terms of the finite element basis functions.
Since we have a non-linear, time-dependent system of equations, Gauss quadrature of the
spatial integrals results in a system of first-order, non-linear ordinary differential equations
(ODEs), which can be written as

RA(u i
(h,k), u; i

(h,k), p (h,k))=0, A=1, . . . , ns (24)

where we have assumed the coefficients of the weight functions to be arbitrary and u i
(h,k), u; i

(h,k)

and p (h,k) are the discrete representations of these variables. The superscript (h, k) is omitted
for clarity in what follows. The backward Euler method is used to transform this system of
ODEs into a non-linear system of algebraic equations, which may be linearized using Newton’s
method to obtain

� K G
−GT C

��Du
Dp

�
= −

�Rm

Rc

�
(25)

where

K:
(Rm

(u
, G:

(Rm

(p
, and C:

(Rc

(p
(26)

and Rm and Rc represent the portions of the residual from the momentum and continuity
equations respectively, and K, G, and C are approximations to the full tangent matrices. This
linear system of equations is solved (at each time step) and the solution is updated 6iz.
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u i+1=u i+Du and p i+1=p i+Dp for each of the Newton iterations. For steady problems,
only one Newton iteration per time step is performed. For unsteady problems, the generalized
a-method time integrator presented in Jansen et al. [21] is used. The linear algebra solver of
Shakib [22] is used to solve the system of Equations (25).

3.5. Parallel processing

The hierarchical basis simulations rely on message passing implemented using the Message
Passing Interface (MPI) library [23] for all parallel communications. To make efficient use of
the MPI library requires that the communication structures be pre-processed, at which time all
necessary data structures for exchanging information between processors during the computa-
tion are set up. The mesh is partitioned such that each element is associated with a unique
processor (partitioning software such as METIS [24] can be used to perform this task). Based
on this information, a methodology has been developed by which each mesh entity on the
inter-processor boundary is assigned a unique master processor, on which equations relating to
its shape functions are solved. Information pertaining to the mesh entities lying on the
inter-processor boundary is then collected and used to carry out the communications (see
Whiting [16]).

4. COMPUTATIONAL EFFORT

The discretization method has been introduced above with little consideration to the computa-
tional effort engendered by each of the different polynomial orders. Solution time, memory
use, and disk storage are clearly the most important measures when considering the cost of a
simulation. However, by looking at time alone, we would fail to assess the scalability of the
method to large-scale problems. In this section, we introduce three additional measures that
will be used to quantify the benefit of using higher polynomial order. These measures take into
account the costs of computing the distinct components of a simulation, i.e., tangent matrix,
residual vector, and linear system solution.

The examples we present are two-dimensional, since we wish to discuss the cost for problems
with well-understood benchmark results. It is somewhat difficult to get a fair cost comparison
on two-dimensional problems when using the three-dimensional code, since the cost of the
higher polynomial order simulations is penalized for adding many additional degrees of
freedom in the third (inactive) dimension. Still, we would like to make some estimates of the
relative simulation cost, so we consider three cost indices, C1, C2, and C3, defined as

C1=nf×n shp
2 ×nint (27)

C2=nf×nshp×nint (28)

C3=nk× (nv×nnzv+ne×nnze+nf×nnzf) (29)

where nf is the number of equivalent two-dimensional triangular face elements, nshp is the
number of two-dimensional degrees of freedom, and nint is the number of triangular integration
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points required to accurately integrate a two-dimensional element. For the linear solver cost,
we have used nk to represent the number of Krylov vectors needed, and nnzv, nnze, and nnzf

for the non-zero fill pattern associated with vertices, edges, and faces (predictable only for
uniform meshes). The first of these measures, C1, represents the computational cost associated
with the formation of the left-hand side or residual tangent matrix. C2 is associated with the
cost of forming the residual vector (right-hand side). C3 relates to the cost of solving the linear
system, which is dominated by the non-zero fill pattern. This cost is relevant to our linear solve
since we are using a sparse iterative solver, which, for each Krylov vector, performs a
matrix–vector product only with the non-zero matrix entries (see Saad [25]). The impact of
each of these cost measures is somewhat problem-dependent, and more details will be
discussed with respect to the individual simulations presented in the following section.

5. NUMERICAL EXAMPLES

This section presents numerical simulations using the hierarchical basis methods described
above. The accuracy of the method is first demonstrated on a problem with a closed-form
analytical solution. It is shown that the method converges at the theoretical rates in both the
L2- and H1-norms. Additional examples are then provided that serve to demonstrate the ability
of higher-order basis methods to attain more accurate simulations for substantially less cost.
The results for the higher-order simulations shown in this section all employ the methodology
described in Section 2.2 for creating higher-order visualizations.

The simulations described below were all performed with the full three-dimensional code.
Thus, to simulate the two-dimensional flows described below, we have used two vertices in the
x3-direction and imposed no x3 velocity and zero viscous flux through the x3 planes; i.e., u3=0
and ti3=0. The depth in the x3-direction was set equal to the length of an element in the
x1-direction.

5.1. Ko6asznay flow

The first example may be identified with the laminar flow behind a grid, and is known as the
Kovasznay flow (see Kovasznay [26]). We will use this flow to demonstrate the convergence of
the method, since we have a closed-form analytical expression for the exact solution, given by

u1=1−elx1 cos(2px2) (30)

u2=
l

2p
elx1 sin(2px2) (31)

with

l=
Re
2

−
'Re2

4
+4p2 (32)
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and we have taken Re=40 for the present study. The flow is considered on a rectangular
domain of −1/25x151 and −1/25x253/2 with the exact solution imposed as an essential
boundary condition at the inflow and upper and lower walls, while the pressure was set at the
outflow. The qualitative behavior of the solution is depicted in Figure 1, which shows contours
of fluid speed from the cubic simulation on the 21×21 mesh.

A convergence study was performed for this flow to determine the accuracy of the method
with respect to the L2- and H1-norms shown in Figure 2(a) and (b) respectively. Table II
summarizes the convergence results and demonstrates that the method is performing at the
theoretical convergence rate in all cases, O(hk+1) and O(hk), for the L2- and H1-error norms
respectively.

It is also clear from Figure 2(a) and (b) that the constant in the error estimate also greatly
improves for the higher-order simulations, making the higher polynomial order basis most
attractive even on the coarsest meshes. This is a particularly attractive feature of stabilized
methods. Figure 3 demonstrates the exponential convergence of the method when Dx1 is fixed
and the polynomial order is increased.

5.2. Flow o6er a backward-facing step

Consider a two-dimensional flow over a backward-facing step at Re=800, based on the step
height and the average inflow velocity. The geometry and boundary conditions are similar to
those used by Gartling [27]. The problem is specified by a fully developed flow entering a

Figure 1. Kovasznay flow. Contours of fluid speed for cubic simulation on 21×21 mesh.
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Figure 2. Kovasznay flow convergence study: , k=1; 2, k=2; �, k=3.

Table II. Convergence rates for Kovasznay flow.

L2-norm H1-normk

1 1.97 0.99
3.00 2.012
3.933 2.98

confined channel which, at Re=800, has been demonstrated by numerous researchers to be
steady and stable (see Gresho et al. [19]). The geometry and boundary conditions are shown
in Figure 4, and the initial condition consists of a parabolic velocity profile imposed upon the
entire channel. This initial condition is marched in time using the backward Euler technique
until the steady solution is reached, confirmed in all cases by monitoring the changes in various
flow quantities.

Since the objective of this study was the comparison of various polynomial-order bases
rather than a complete description of the physics, the standard step flow geometry was
simplified by excluding the region upstream of the step as described by Gartling [27]. This also
allows for a more accurate comparison with his benchmark results. Numerical solutions were
obtained on a variety of uniform tetrahedral meshes for several different polynomial orders.
The mesh statistics (for the equivalent two-dimensional problem) are shown in Table III. Here,
Dx1 and Dx2 represent the element size in the x1 and x2 direction, respectively.

The basic character of this flow is well known. At Re=800, there are two separation
regions, one starting at the step corner and continuing downstream approximately 12 step
heights, and another on the upper wall of the channel occupying a region from approximately
10–20 step heights downstream. These key features are shown in Figure 5(a)–(c), which
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Figure 3. Log of error versus polynomial order for Kovasznay flow: �, H1-norm; , L2-norm.

represent the fluid speed, pressure, vorticity, and velocity vectors for the cubic simulation on
mesh C. These figures are shown in the correct scale, however, only the first ten step heights
of the channel are shown. Qualitatively, these figures compare well with those presented in
Gartling [27].

Two-dimensional contour plots of various flow quantities look similar for all simulations
making it difficult to quantify the benefit of the higher-order methods. We will, therefore,
compare line plots of these quantities at different spatial locations. Figure 6 presents a
comparison between the cubic simulation on mesh A, the quadratic on mesh C, and the linear
on mesh E. The x1- and x2-velocities and pressure are shown at two locations along the
channel, x1=7.0 and x1=15.0, the same locations presented in Gartling [27], which we have
included on the velocity plots as a benchmark result. The cubic and quadratic are able to
exactly reproduce the benchmark simulation, while the linear, even on the most refined grid,
is still slightly off in the x2-velocity and pressure at the x1=7.0 location. This is not surprising,
since the benchmark result is from a quadratic simulation with 41 vertices across the channel.
More refined simulations were run for the quadratic (mesh D) and cubic (mesh C) bases to
confirm that these solutions were grid independent.

These three simulations represent qualitatively similar results. Clearly, the only results that
visibly differ from the benchmark result are the linear x2 velocity and pressure at x1=7.0,
which is the most sensitive quantity in the study. Based on the data in Table III and the linear
solver information, the cost measures introduced in Section 4, Equations (27)–(29), were
computed for these three simulations. The results are summarized in Table IV. For the
purposes of computing C3 and CPU time, we have converged each of the simulations so that
the maximum delta increment in any component of the solution was less than 1×10−6. Note
that all the cost estimates have been normalized by the cubic costs, to clarify the presentation.
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Figure 4. Step flow geometry and problem description.

The CPU time included in the table includes all three-dimensional modes, and therefore is
not an entirely accurate measure of the full benefit of higher-order simulations, since many
higher-order modes are wasted on the inactive third dimension. Furthermore, the linear mesh
probably requires another level of refinement to attain the same quality as the quadratic and
cubic solutions and we are perhaps erring on the conservative side with these estimates.

Table IV clearly shows that the cubic simulation is the most cost effective, by any of the
measures. It can be seen that C1, related to the cost of forming the tangent matrix, is the
least sensitive to polynomial order (although still over a factor of 2 better than the linear).
This is to be expected since this number is proportional to n shp

2 , so that despite the reduction
in the number of elements, this cost remains relatively constant. However, for steady
problems, it has been observed that it may not be necessary to form the tangent matrix every
time step, and may be used for ten or more iterations before reforming. The cost of the
linear solve, represented by C3 indicates that the cubic simulation is over 40 times cheaper
than the linear. While one expects the equations to get stiffer as k is increased, to get the
same level of accuracy, Dx must be decreased so far (for k=1) as to make the linear system
much more ill-conditioned than the modest increase in condition number associated with an
increase in k.

Table III. Mesh statistics

Dx2Dx1FacesEdgesVerticesMesh

A 405 1044 640 0.250 0.250
B 847 2286 1440 0.167 0.167

0.1000.100400062102211C
0.050D 8421 24 420 16 000 0.050
0.0250.02564 00096 840E 32 841
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Figure 5. Step flow simulation characteristics: mesh C, k=3.

A further study was carried out to determine the accuracy of the pressure for the linear basis
method. Since traditional Galerkin methods must interpolate pressure one order lower than
the velocity, the pressure is necessarily one order less accurate. The stabilized method does not
suffer from this limitation. This is demonstrated by comparing two linear basis simulations
with the most refined cubic simulation at the x1=7 location (see Figure 7). The log of the L�
error versus Dx2 shows a slope of 2.1, which is slightly better than optimal for the meshes
considered; the optimal L� error for the interpolation being O(h2) (see Johnson [28]).

5.3. Lid-dri6en ca6ity flow

The final problem considered is the steady, two-dimensional flow inside a closed container
driven by its lid. The lid slides to the right across the top of the cavity, shearing the fluid and
setting up a recirculation region. There is a primary vortex in the center of the cavity and
secondary eddies in the lower corner (the number of these secondary eddies depends on the
Reynolds number). For the present study, we have chosen to consider Re=400 (based on the
lid velocity), for which there exists well-established benchmark results with which to compare
(see Ghia et al. [29]). Since the velocity is discontinuous at both upper corners, singularities will
develop in the pressure field, which must be controlled by the method.
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Figure 6. Bachward-facing step: comparison of qualitatively similar solutions. Velocity and pressure are
plotted versus x2 at x1=7 and x1=15. Velocities at x1=15 were shifted for plotting: �, k=1; + , k=2;

�, k=3; , Gartling [27].

The geometry and boundary conditions are illustrated in Figure 8. In addition to the
velocity constraints, the pressure field is constrained by setting its value at the single vertex in
the lower left corner of the cavity. Uniform meshes were used with equal spacing in the x1- and
x2-directions. To isolate the singularities in the upper corners, nested local mesh refinement
was achieved by sub-dividing the original corner elements. The number of new corner elements
was chosen such that the first point is 3.90625×10−4 units from the corner for each mesh.
This distance dictates the extent to which the discontinuity in the velocity field is resolved (i.e.,
how much fluid is ‘leaked’ from the cavity). The statistics for these meshes are shown in Table
V. These figures do not include the refinement in the upper corners. Using these meshes, linear
simulations were run on meshes C–E, quadratic on B–D, and cubic on A–C. These
simulations were advanced in time until the normalized changes in the solution variables (u
and p) were less than 1×10−6.

The basic solution characteristics of this flow are shown in Figure 9(a)–(c), which displays
contours of fluid speed, pressure, and vorticity, as well as velocity vectors, respectively. The

Table IV. Step flow simulation cost comparison.

CPU timeC3C1 C2Mesh K

1.00 1.00A 3 1.00 1.00
5.26 1.80C 2 1.13 1.88

2.25 7.50 43.93E 6.551
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Figure 7. Log of L� error in pressure versus log(1/Dx1).

plots shown here are the quadratic simulation on mesh C; however, all converged simulations
look identical. To more carefully monitor the convergence, we have again made use of
two-dimensional line plots of velocity. Figure 10(a) shows profiles of u2(x1, x2=0) and
u1(x1=0, x2) for the most refined mesh for each polynomial order. Note that the u1 velocity

Figure 8. Lid-driven cavity geometry and boundary conditions.
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Table V. Lid-driven cavity mesh statistics.

Vertices Dx1Mesh

11×11 0.1A
B 21×21 0.05

41×41 0.025C
81×81D 0.0125

E 161×161 0.00625

was scaled by 0.5 to facilitate plotting. Also shown is the benchmark result of Ghia et al. [29].
The three plots are virtually indistinguishable.

A cost comparison study similar to that for the backward-facing step flow was carried out
for the lid-driven cavity flow (see Figure 10(b)). The three cost indices and CPU time are
summarized in Table VI. The values of the cost indices in this case are even more dramatic
than in the case of the backward-facing step flow. For this simulation, we have also provided

Figure 9. Lid-driven cavity flow characteristics: mesh D, k=2.
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Figure 10. Lid-driven cavity flow. Plots of u1(x1=0, x2) and u2(x1, x2=0): �, k=1; �, k=2; + , k=3;
, Ghia et al. [29].
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information comparing the memory requirements and disk storage required for the simulations.
The ‘Matrix storage’ column of Table VI indicates the number of non-zero blocks for the sparse
storage of the tangent matrix (the dominant memory requirement), indicating that the memory
requirements for the cubic simulation are about 15 times less than the linear, while the
cubic is about six times better than the quadratic. The ‘Mesh size’ column compares the
size in megabytes of the mesh data file. This size indicates the storage of the compact data
structure, used in the analysis code, not the entire rich mesh database file. It should be pointed
out that the size of the rich mesh database file is fixed for each mesh, regardless of the
polynomial order.

6. CONCLUSIONS

A stabilized finite element method using hierarchical basis functions applied to the incompress-
ible Navier–Stokes equations has been presented. The implementation is general, allowing
three-dimensional simulations on arbitrary unstructured meshes. The goal of the present work
was to clarify the potential benefit of using higher-order basis functions with stabilized
methods. To achieve this goal, which we believe to have been accomplished, only relatively
simple geometries and laminar flows have been considered in the present work. Due to the
positive outcome of the present study, applications of the hierarchical basis are currently
underway for turbulent flows using both the Reynolds averaged equations and LES. It is
expected that the higher-order methods will reduce the computational cost of these simulations
to a level that will enable better simulations than are currently available using only linear basis
methods. In addition, variational multi-scale simulations of turbulence based on the hierarchi-
cal basis presented in this work are underway, with preliminary models being presented in
Hughes et al. [17].

We have presented simulations that compare the cost versus accuracy of higher-order
simulations. These cost comparisons have demonstrated that the higher-order simulations can
be used to obtain much more cost-effective results when compared with traditional linear basis
methods. The higher-order simulations also decrease the amount of core memory required for
a simulation. It is expected that the benefit of the hierarchical basis will be even more profound
when truly three-dimensional flows are considered. On the two-dimensional simulations, much
of the computational effort is wasted on the third quasi-dimension.

Table VI. Lid flow simulation cost comparison.

Matrix MeshCPUC3C2C1KMesh
sizestoragetime

1.00 1.00 1.00 1.00 1.00 1.00A 3
2.88C 4.80 21.60 4.99 6.55 6.022

1 32.0 19.2 440.7 6.42 15.65 41.58E
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